Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Sci Adv ; 7(41): eabi7460, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34613782

RESUMO

It is not understood how changes in the genetic makeup of individuals alter the behavior of groups of animals. Here, we find that, even at early larval stages, zebrafish regulate their proximity and alignment with each other. Two simple visual responses, one that measures relative visual field occupancy and one that accounts for global visual motion, suffice to account for the group behavior that emerges. Mutations in genes known to affect social behavior in humans perturb these simple reflexes in individual larval zebrafish and change their emergent collective behaviors in the predicted fashion. Model simulations show that changes in these two responses in individual mutant animals predict well the distinctive collective patterns that emerge in a group. Hence, group behaviors reflect in part genetically defined primitive sensorimotor "motifs," which are evident even in young larvae.

2.
iScience ; 23(3): 100942, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32179471

RESUMO

Many animals, including humans, have evolved to live and move in groups. In humans, disrupted social interactions are a fundamental feature of many psychiatric disorders. However, we know little about how genes regulate social behavior. Zebrafish may serve as a powerful model to explore this question. By comparing the behavior of wild-type fish with 90 mutant lines, we show that mutations of genes associated with human psychiatric disorders can alter the collective behavior of adult zebrafish. We identify three categories of behavioral variation across mutants: "scattered," in which fish show reduced cohesion; "coordinated," in which fish swim more in aligned schools; and "huddled," in which fish form dense but disordered groups. Changes in individual interaction rules can explain these differences. This work demonstrates how emergent patterns in animal groups can be altered by genetic changes in individuals and establishes a framework for understanding the fundamentals of social information processing.

3.
Cell Rep ; 28(11): 2767-2776.e5, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509740

RESUMO

The hormone αKlotho regulates lifespan in mice, as knockouts die early of what appears to be accelerated aging due to hyperphosphatemia and soft tissue calcification. In contrast, the overexpression of αKlotho increases lifespan. Given the severe mouse phenotype, we generated zebrafish mutants for αklotho as well as its binding partner fibroblast growth factor-23 (fgf23). Both mutations cause shortened lifespan in zebrafish, with abrupt onset of behavioral and degenerative physical changes at around 5 months of age. There is a calcification of vessels throughout the body, most dramatically in the outflow tract of the heart, the bulbus arteriosus (BA). This calcification is associated with an ectopic activation of osteoclast differentiation pathways. These findings suggest that the gradual loss of αKlotho found in normal aging might give rise to ectopic calcification.


Assuntos
Glucuronidase/metabolismo , Longevidade/genética , Osteogênese/genética , Calcificação Vascular/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Glucuronidase/genética , Coração , Inflamação/genética , Inflamação/metabolismo , Rim/metabolismo , Proteínas Klotho , Masculino , Mutação , Miocárdio/metabolismo , RNA-Seq , Transdução de Sinais/genética , Calcificação Vascular/genética , Calcificação Vascular/mortalidade , Peixe-Zebra/genética
4.
iScience ; 17: 325-333, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31325771

RESUMO

Dopamine transporter (SLC6A3) deficiency causes infantile Parkinson disease, for which there is no effective therapy. We have explored the effects of genetically deleting SLC6A3 in zebrafish. Unlike the wild-type, slc6a3-/- fish hover near the tank bottom, with a repetitive digging-like behavior. slc6a3-/- fish manifest pruning and cellular loss of particular tyrosine hydroxylase-immunoreactive neurons in the midbrain. Clozapine, an effective therapeutic for treatment-resistant schizophrenia, rescues the abnormal behavior of slc6a3-/- fish. Clozapine also reverses the abnormalities in the A8 region of the mutant midbrain. By RNA sequencing analysis, clozapine increases the expression of erythropoietin pathway genes. Transgenic over-expression of erythropoietin in neurons of slc6a3-/- fish partially rescues the mutant behavior, suggesting a potential mechanistic basis for clozapine's efficacy.

5.
Curr Biol ; 29(15): 2541-2546.e3, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31327717

RESUMO

Mating and flight from threats are innate behaviors that enhance species survival [1, 2]. Stimuli to these behaviors often are contemporaneous and conflicting [3, 4]. Both how such conflicts are resolved and where in the brain such decisions are made are poorly understood. For teleosts, olfactory stimuli are key elements of mating and threat responses [5-7]. For example, zebrafish manifest a stereotypical escape response when exposed to an alarm substance released from injured conspecific skin ("skin extract") [8, 9]. We find that when mating, fish ignore this threatening stimulus. Water conditioned by the mating fish ("mating water") suffices to suppress much of the alarm-response behavior. By 2-photon imaging of calcium transients [10], we mapped the regions of the brain responding to skin extract and to mating water. In the telencephalon, we found regions where the responses overlap, one region (medial Dp) to be predominantly activated by skin extract, and another, Vs, to be predominantly activated by mating water. When mating water and skin extract were applied simultaneously, the alarm-specific response was suppressed, while the mating-water-specific response was retained, corresponding to the dominance of mating over flight behavior. The choice made, for reproduction over escape, is opposite to that of mammals, presumably reflecting how the balance affects species survival.


Assuntos
Reação de Fuga , Odorantes , Comportamento Sexual Animal , Telencéfalo/fisiologia , Peixe-Zebra/fisiologia , Animais , Água
6.
BMC Cardiovasc Disord ; 18(1): 135, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29969998

RESUMO

BACKGROUND: The large global burden of rheumatic heart disease (RHD) has come to light in recent years following robust epidemiologic studies. As an operational research component of a broad program aimed at primary and secondary prevention of RHD, we sought to determine the current prevalence of RHD in the country's capital, Lusaka, using a modern imaging-based screening methodology. In addition, we wished to evaluate the practicality of training local radiographers in echocardiography screening methods. METHODS: Echocardiography was conducted on a random sample of students in 15 schools utilizing a previously validated, abbreviated screening protocol. Through a task-shifting scheme, and in the spirit of capacity-building to enhance local diagnostic and research skills, general radiographers based at Lusaka University Teaching Hospital (UTH) were newly trained to use portable echocardiography devices. Students deemed as screen-positive were referred for comprehensive echocardiography and clinical examination at UTH. Cardiac abnormalities were classified according to standard World Heart Federation criteria. RESULTS: Of 1102 students that were consented and screened, 53 students were referred for confirmatory echocardiography. Three students had definite RHD, 10 had borderline RHD, 29 were normal, and 11 students were lost to follow-up. The rates of definite, borderline, and total RHD were 2.7 per 1000, 9.1 per 1000, and 11.8 per 1000, respectively. Anterior mitral valve leaflet thickening and chordal thickening were the most common morphological defects. The pairwise kappa test showed fair agreement between the local radiographers and an echocardiographer quality assurance specialist. CONCLUSION: The prevalence of asymptomatic RHD in urban communities in Zambia is within the range of results reported in other sub-Saharan African countries using the WHF criteria. Task-shifting local radiographers to conduct echocardiography was feasible. The results of this study will be used to inform ongoing efforts in Zambia to control and eventually eliminate RHD. TRIAL REGISTRATION: The study was registered on clinicaltrials.gov ( #NCT02661763 ).


Assuntos
Cardiopatia Reumática/epidemiologia , Adolescente , Distribuição por Idade , Criança , Estudos Transversais , Ecocardiografia , Feminino , Inquéritos Epidemiológicos , Humanos , Masculino , Programas de Rastreamento/métodos , Valor Preditivo dos Testes , Prevalência , Reprodutibilidade dos Testes , Cardiopatia Reumática/diagnóstico por imagem , Fatores de Tempo , Fluxo de Trabalho , Zâmbia/epidemiologia
7.
J Infect Dis ; 218(suppl_1): S44-S48, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29878132

RESUMO

Residency training is a profound experience that greatly influences the career trajectory of every trainee. Currently, residency programs focus heavily (or almost exclusively) on the acquisition of medical knowledge and fail to foster intellectual curiosity and introduce residents to careers in investigation. We share 3 programs embedded in residency training where this focus is shifted with an emphasis on prompting intellectual curiosity and exciting residents about careers in investigation to revitalize the physician-scientist workforce.


Assuntos
Internato e Residência , Médicos , Pesquisadores , Escolha da Profissão , Mão de Obra em Saúde , Humanos
8.
Sci Transl Med ; 10(438)2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695453

RESUMO

Today's most transformative medicines exist because of fundamental discoveries that were made without regard to practical outcome and with their relevance to therapeutics only appearing decades later.


Assuntos
Medicina/métodos , Ciência/métodos , Animais , Humanos
9.
Biochem Biophys Res Commun ; 477(4): 581-588, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27343557

RESUMO

In search for novel key regulators of cardiac valve formation, we isolated the zebrafish cardiac valve mutant ping pong (png). We find that an insertional promoter mutation within the zebrafish mediator complex subunit 10 (med10) gene is leading to impaired heart valve formation. Expression of the T-box transcription factor 2b (Tbx2b), known to be essential in cardiac valve development, is severely reduced in png mutant hearts. We demonstrate here that transient reconstitution of Tbx2b expression rescues AV canal development in png mutant zebrafish. By contrast, overexpression of Forkhead box N4 (Foxn4), a known upstream regulator of Tbx2b, is not capable to reconstitute tbx2b expression and heart valve formation in Med10-deficient png mutant hearts. Interestingly, hyaluronan synthase 2 (has2), a known downstream target of Tbx2 and producer of hyaluronan (HA) - a major ECM component of the cardiac jelly and critical for proper heart valve development - is completely absent in ping pong mutant hearts. We propose here a rather unique role of Med10 in orchestrating cardiac valve formation by mediating Foxn4 dependent tbx2b transcription, expression of Has2 and subsequently proper development of the cardiac jelly.


Assuntos
Glucuronosiltransferase/metabolismo , Valvas Cardíacas/embriologia , Complexo Mediador/fisiologia , Proteínas com Domínio T/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Fatores de Transcrição Forkhead/metabolismo , Valvas Cardíacas/metabolismo , Hialuronan Sintases , Mutação , Transdução de Sinais , Proteínas com Domínio T/metabolismo , Peixe-Zebra/genética
11.
Bull World Health Organ ; 93(10): 732-736, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26600616

RESUMO

PROBLEM: In 2008, the prevalence of paediatric asthma in Zambia was unknown and the national treatment guideline was outdated. APPROACH: We created an international partnership between Zambian clinicians, the Zambian Government and a pharmaceutical company to address shortcomings in asthma treatment. We did two studies, one to estimate prevalence in the capital of Lusaka and one to assess attitudes and practices of patients. Based on the information obtained, we educated health workers and the public. The information from the studies was also used to modernize government policy for paediatric asthma management. LOCAL SETTING: The health-care system in Zambia is primarily focused on acute care delivery with a focus on infectious diseases. Comprehensive services for noncommunicable diseases are lacking. Asthma management relies on treatment of acute exacerbations instead of disease control. RELEVANT CHANGES: Seven percent of children surveyed had asthma (255/3911). Of the 120 patients interviewed, most (82/120, 68%) used oral short-acting ß2-agonists for symptom control; almost half (59/120, 49%) did not think the symptoms were preventable and 43% (52/120) thought inhalers were addictive. These misconceptions informed broad-based educational programmes. We used a train-the-trainer model to educate health-care workers and ran public awareness campaigns. Access to inhalers was increased and the Zambian standard treatment guideline for paediatric asthma was revised to include steroid inhalers as a control treatment. LESSONS LEARNT: Joint activities were required to change paediatric asthma care in Zambia. Success will depend on local sustainability, and it may be necessary to shift resources to mirror the disease burden.

14.
Nat Chem Biol ; 11(7): 511-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26030728

RESUMO

Spinal muscular atrophy (SMA), which results from the loss of expression of the survival of motor neuron-1 (SMN1) gene, represents the most common genetic cause of pediatric mortality. A duplicate copy (SMN2) is inefficiently spliced, producing a truncated and unstable protein. We describe herein a potent, orally active, small-molecule enhancer of SMN2 splicing that elevates full-length SMN protein and extends survival in a severe SMA mouse model. We demonstrate that the molecular mechanism of action is via stabilization of the transient double-strand RNA structure formed by the SMN2 pre-mRNA and U1 small nuclear ribonucleic protein (snRNP) complex. The binding affinity of U1 snRNP to the 5' splice site is increased in a sequence-selective manner, discrete from constitutive recognition. This new mechanism demonstrates the feasibility of small molecule-mediated, sequence-selective splice modulation and the potential for leveraging this strategy in other splicing diseases.


Assuntos
Processamento Alternativo , Atrofia Muscular Espinal/tratamento farmacológico , RNA de Cadeia Dupla/agonistas , Ribonucleoproteína Nuclear Pequena U1/agonistas , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo , Animais , Sítios de Ligação , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/mortalidade , Atrofia Muscular Espinal/patologia , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteólise , Precursores de RNA/agonistas , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , Ribonucleoproteína Nuclear Pequena U1/química , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/metabolismo , Análise de Sobrevida , Proteína 2 de Sobrevivência do Neurônio Motor/química , Proteína 2 de Sobrevivência do Neurônio Motor/genética
15.
Sci Transl Med ; 6(228): 228lr1, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24648339

RESUMO

The study of rare diseases in both academic and industry settings yields new knowledge about human pathophysiology and ultimately helps patients.


Assuntos
Doenças Raras/tratamento farmacológico , Pesquisa Translacional Biomédica/métodos , Pesquisa Translacional Biomédica/tendências , Feminino , Humanos
16.
Microbiol Res ; 169(2-3): 107-20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24360837

RESUMO

Due to evolutionary conservation of biology, experimental knowledge captured from genetic studies in eukaryotic model organisms provides insight into human cellular pathways and ultimately physiology. Yeast chemogenomic profiling is a powerful approach for annotating cellular responses to small molecules. Using an optimized platform, we provide the relative sensitivities of the heterozygous and homozygous deletion collections for nearly 1800 biologically active compounds. The data quality enables unique insights into pathways that are sensitive and resistant to a given perturbation, as demonstrated with both known and novel compounds. We present examples of novel compounds that inhibit the therapeutically relevant fatty acid synthase and desaturase (Fas1p and Ole1p), and demonstrate how the individual profiles facilitate hypothesis-driven experiments to delineate compound mechanism of action. Importantly, the scale and diversity of tested compounds yields a dataset where the number of modulated pathways approaches saturation. This resource can be used to map novel biological connections, and also identify functions for unannotated genes. We validated hypotheses generated by global two-way hierarchical clustering of profiles for (i) novel compounds with a similar mechanism of action acting upon microtubules or vacuolar ATPases, and (ii) an un-annotated ORF, YIL060w, that plays a role in respiration in the mitochondria. Finally, we identify and characterize background mutations in the widely used yeast deletion collection which should improve the interpretation of past and future screens throughout the community. This comprehensive resource of cellular responses enables the expansion of our understanding of eukaryotic pathway biology.


Assuntos
Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Antifúngicos/farmacologia , Vias Biossintéticas , Farmacorresistência Fúngica , Regulação Fúngica da Expressão Gênica , Ensaios de Triagem em Larga Escala , Dados de Sequência Molecular , Filogenia , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Sci Transl Med ; 5(201): 201ps11, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-24005157

RESUMO

Aside from established genetic evidence, the best proof of a model for disease pathogenesis rests on predicted perturbation via targeted medicines in clinical trials. Here, I discuss the strategy of performing exploratory first-in-human clinical studies on mechanistically homogeneous populations (often small groups of patients with rare diseases) as a routine entrance to full-registration clinical trials. Over the past decade, this approach has proved some pathogenic theories, disproved others, and guided investigators in new scientific directions. The immediate advantages have been smaller trials and provision of new treatments for rare diseases. Later, indications often can be expanded to subsets of more common diseases.


Assuntos
Doenças Raras/tratamento farmacológico , Pesquisa Translacional Biomédica/métodos , Pesquisa Translacional Biomédica/tendências , Adulto , Ensaios Clínicos como Assunto , Síndromes Periódicas Associadas à Criopirina/tratamento farmacológico , Desenho de Fármacos , Descoberta de Drogas , Feminino , Humanos , Seleção de Pacientes , Projetos de Pesquisa , Esclerose Tuberosa/tratamento farmacológico
18.
Cell Host Microbe ; 11(6): 654-63, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22704625

RESUMO

With renewed calls for malaria eradication, next-generation antimalarials need be active against drug-resistant parasites and efficacious against both liver- and blood-stage infections. We screened a natural product library to identify inhibitors of Plasmodium falciparum blood- and liver-stage proliferation. Cladosporin, a fungal secondary metabolite whose target and mechanism of action are not known for any species, was identified as having potent, nanomolar, antiparasitic activity against both blood and liver stages. Using postgenomic methods, including a yeast deletion strains collection, we show that cladosporin specifically inhibits protein synthesis by directly targeting P. falciparum cytosolic lysyl-tRNA synthetase. Further, cladosporin is >100-fold more potent against parasite lysyl-tRNA synthetase relative to the human enzyme, which is conferred by the identity of two amino acids within the enzyme active site. Our data indicate that lysyl-tRNA synthetase is an attractive, druggable, antimalarial target that can be selectively inhibited.


Assuntos
Antimaláricos/farmacologia , Inibidores Enzimáticos/farmacologia , Fungos/química , Isocumarinas/farmacologia , Lisina-tRNA Ligase/antagonistas & inibidores , Plasmodium falciparum/enzimologia , Antimaláricos/isolamento & purificação , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/isolamento & purificação , Humanos , Concentração Inibidora 50 , Isocumarinas/isolamento & purificação , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores
19.
Methods Cell Biol ; 105: 525-41, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21951546

RESUMO

The zebrafish is proving to be highly amenable to in vivo small molecule screening. With a growing number of screens successfully completed, a rich interface is being created between disciplines that have historically used zebrafish (e.g., embryology and genetics) and disciplines focused on small molecules (e.g., chemistry and pharmacology). Navigating this interface requires consideration of the unique demands of conducting high-throughput screening in vivo. In this chapter, we discuss design elements of successful zebrafish screens, established screening methods, and approaches for mechanism of action studies following discovery of novel small molecules. These methods are enabling the zebrafish to have an increasingly positive impact on biomedical research and drug development.


Assuntos
Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Embrião não Mamífero/fisiologia , Ensaios de Triagem em Larga Escala , Bibliotecas de Moléculas Pequenas/farmacologia , Peixe-Zebra/fisiologia , Animais , Automação Laboratorial , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Biomarcadores/análise , Embrião não Mamífero/efeitos dos fármacos , Humanos , Fenótipo , Projetos de Pesquisa , Peixe-Zebra/embriologia
20.
J Cell Sci ; 124(Pt 18): 3127-36, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21852424

RESUMO

Assembly, maintenance and renewal of sarcomeres require highly organized and balanced folding, transport, modification and degradation of sarcomeric proteins. However, the molecules that mediate these processes are largely unknown. Here, we isolated the zebrafish mutant flatline (fla), which shows disturbed sarcomere assembly exclusively in heart and fast-twitch skeletal muscle. By positional cloning we identified a nonsense mutation within the SET- and MYND-domain-containing protein 1 gene (smyd1) to be responsible for the fla phenotype. We found SMYD1 expression to be restricted to the heart and fast-twitch skeletal muscle cells. Within these cell types, SMYD1 localizes to both the sarcomeric M-line, where it physically associates with myosin, and the nucleus, where it supposedly represses transcription through its SET and MYND domains. However, although we found transcript levels of thick filament chaperones, such as Hsp90a1 and UNC-45b, to be severely upregulated in fla, its histone methyltransferase activity - mainly responsible for the nuclear function of SMYD1 - is dispensable for sarcomerogenesis. Accordingly, sarcomere assembly in fla mutant embryos can be reconstituted by ectopically expressing histone methyltransferase-deficient SMYD1. By contrast, ectopic expression of myosin-binding-deficient SMYD1 does not rescue fla mutants, implicating an essential role for the SMYD1-myosin interaction in cardiac and fast-twitch skeletal muscle thick filament assembly.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Músculo Esquelético/enzimologia , Miocárdio/enzimologia , Miosinas/metabolismo , Sarcômeros/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Clonagem Molecular , Citoesqueleto/metabolismo , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Análise em Microsséries , Contração Muscular/fisiologia , Músculo Esquelético/ultraestrutura , Mutação/genética , Miocárdio/ultraestrutura , Ligação Proteica , Sarcômeros/genética , Transgenes/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...